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Abstract

Significant efforts have been made in the study of electromechanical behavior of piezoelectric structures. However,
the success has been mainly confined to the global response of the structures. This paper provides a comprehensive
analytical study on the load transfer between a piezoceramic actuator and an anisotropic elastic medium under in-plane
mechanical and electrical loading. The actuator is characterized by an electroelastic line model with the poling direction
being perpendicular to its length. The electrically induced local stress field is studied in detail by using Fourier transform
technique and solving the resulting integral equations in terms of the interfacial shear stress. Typical examples are
provided to show the effects of the geometry, the material combination and the material anisotropy of the composite on
the load transfer. The study is further extended to treat the interfacial debonding between the actuator and the host
material. The load transfer predicted by the current model is found to be in good quantitative accord with the FEM
analysis for general orthotropic structures. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The emergence of new piezoceramic materials, which are capable of generating larger strains under
electric fields, had revived the intense research and development of new piezoceramic actuators for struc-
tural applications. Piezoceramic materials have the advantages of quick response, low power consumption
and high linearity. As a result, they had been used in the design of different advanced structures, e.g. large-
scale space structures, aircraft structures, satellites, etc. In addition, piezoceramic actuators can be easily
fabricated into different desired shapes which can be used in different applications to achieve the highest
possible displacement or force for the lowest possible voltage. It is possible now to integrate piezoceramic
actuators with conventional structural materials to serve as energy input devices or actuating elements in
many engineering applications (Ashley, 1995; Dosch et al., 1995; Gandhi and Thompson, 1992; Ha et al.,
1992; Varadan et al., 1993).
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One of the most fundamental issues surrounding the effectiveness of a piezoelectric actuator in a smart
structure system is to determine the actuation effect being transferred from the actuator to the host
structure, which necessitates the accurate assessment of the local stress distribution around the actuator.

Crawley and de Luis (1987) first analyzed a beam-like structure with surface bonded and embedded thin
sheet piezoelectric actuators to study the load transfer between the actuator and the host beam. In that
analysis, the axial stress in the actuator was assumed to be uniform across its thickness, and the host
structure was treated as a Bernoulli-Euler beam. This model was further modified using a Bernoulli-Euler
model of a piezoelectric actuator by considering the linear stress distribution along its thickness (Crawley
and Anderson, 1990). Im and Atluri (1989) further modified the actuator model presented by Crawley and
de Luis (1987) by considering both the axial and the transverse shear forces in the beam. A refined actuator
model based on the plane stress condition was presented for a beam structure with symmetrically surface-
bonded actuator patches (Lin and Rogers, 1993a,b).

Plate and shell models have been extensively used in modeling piezoelectric structures. Wang and Rogers
(1991) modified the classical laminated plate theory to model actuator-induced bending and extension of
laminated plates under static loading. Tauchert (1992) further investigated the control of thermal defor-
mation of laminated plates using piezoelectric actuators. Typical examples also include the work by
Dimitriadis et al. (1991), Tzou and Tseng (1991), Mitchell and Reddy (1995), Bank and Smith (1995),
Reddy (1997), Han and Lee (1998) and Reddy (1999). Finite element method is currently also being used
for active vibration and noise control of piezoelectric structures (Tzou and Ye, 1994; Lim et al., 1999).

In spite of the fact that different methods have been developed to treat piezoelectric structures, existing
work is mainly focused on the global response of these systems. Because of the difficulties associated with
the complicated electromechanical coupling, material inhomogeneity and anisotropy, solutions represent-
ing the local electromechanical behavior around piezoelectric actuators have not been properly established.
Recently, Wang and Meguid (2000) studied the load transfer between a thin piezoelectric actuator and an
isotropic host medium. The singular stress field around the actuator tip was studied.

This article is concerned with the development of an analytical solution to describe coupled electro-
mechanical behavior of a piezoceramic actuator bonded to an infinite orthotropic elastic medium under in-
plane mechanical and electrical loads. The actuator was characterized using a one-dimensional model. The
load transfer between a piezoelectric actuator and the host structure was determined by using Fourier
transform technique and solving the resulting integral equations in terms of the interfacial shear stress. The
analytical expression of the local stress field around the actuator was studied in detail. Specifically, two
aspects of the work were examined. The first was concerned with determining the effect of the geometry, the
material mismatch and the material anisotropy on the load transfer between the actuator and the host
structure, while the second was concerned with the effect of interfacial debonding.

2. Formulation of the problem

Consider now the plane strain problem of a thin piezoceramic actuator bonded to a homogeneous or-
thotropic elastic medium, as illustrated in Fig. 1. The poling direction of the actuator is along the z-axis,
and the halflength and the thickness of the actuator are denoted by ¢ and 4, respectively. An electric field E,
is applied along the poling direction of the actuator by applying a voltage (AV') between the upper and the
lower electrodes of the actuator, with E, = —AV /h.

For a thin actuator, for which the thickness is very small compared to its length, the applied electric field
will mainly result in an axial deformation. The axial stress and displacement can then be assumed to be
uniform across the thickness of the actuator, and the interfacial shear stress (r) transferred between the
actuator and the host can be replaced by a distributed body force along the actuator. Accordingly, the
actuator can be modeled as an electroelastic line subjected to the applied electric field and the distributed
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Fig. 1. Actuator model.

axial force, t/h, as shown in Fig. 1. By using the equilibrium condition and the traction-free conditions at
the ends of the actuator, the axial stress in the actuator can be expressed in terms of the shear stress t as

o, (y) = —/j %dé (1)

with
/_C' T(@ di =0. (2)

The relation between the stress, the strain and the electric field of this actuator can be obtained by using the
following general constitutive relation:

0, = E,e, — e,F., (3)

where E, and e, are effective material constants given in Appendix A. The resulting axial strain can then be
expressed in terms of 7 as

1 4 .
&) = “En [ 7(&)d¢ +ZTEZ, | <ec. (4)

Consider now the deformation of the host orthotropic elastic medium with the principal elastic axes
being parallel to the y and z axes. The solution of the displacement components can be obtained by solving
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the governing equations of the problem using Fourier transform technique, as shown in Appendix B. The
general solution in Fourier transform domain can be expressed as

~ Gle™ +He™, ¢33 < %(\/011022 —cn),
1=1 (Gi+Hz)e™, ¢33 = 5(v/Crien — c), (5)
G; € 3 coszy + Hf e sinz4, Cc33 > %(,/011022 — 6’12),
and
. 2
1 CnCaa 7 s|cucn — (C12 + C33) ] oT
po L | _catn 07 @ ©)
C33S2 IS(C'IZ + C33) 623 Ccip + ¢33 Oz

where ¢;; are elastic constants of the medium, and v, w are Fourier transform of the displacement com-
ponents in the y and z directions, respectively. It should be noted that an isotropic medium will satisfy the
relation ¢33 = (1/2)(\/¢11¢2; — ¢12). In the above equations,

20 = Bolslz,  z1 = Bilslz, z2 = Paolslz,  z3 = Pslslz,  za = Bulslz,

Bo = Vui, /312\/u1+\/uf—uz, ﬁ2:\/”1_\/u%_u2a
Nt o Yur—w
Bs=1\"—"F Bs=1\"—"F
2 2
)2 11

>
_cnep e — (et en .
1= > ; =),
C22C33 €2

and G/, H{", Gi, H,, Gy, H; are functions of s to be determined from the boundary conditions of the

problems.
The halfspace will be deformed by the piezoelectric actuator through an interfacial shear stress at z = 0,
which can be expressed as

_ =), bl<e,
be = { 0, otherwise. (7)

Using this boundary condition, the unknown functions in Egs. (5) and (6) can be determined, and the
resulting strain along z = 0 can be expressed as

2 ¢ (&
600y = [ Tk ac )
where E is an effective elastic modulus of the host medium given by
2KiK>(By — By) —
(K1 + Kz)(zlz +IC33) s %( cuen = CI2)7
- 2K, 1
E=1{ Kilen+cw) en =3 (venez —cu), )
- =
20,(K, +K
%a C33 > %(\/011022 —cn),
1{C12 €33

where
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2 2 2 2
Ki = —(cnef; —crican +¢fy +cnnes), Ko = (enesfy — cricn + ¢f, + ciae33),
- 2 = 2 2
Ki =2cnenf;, Ko = cnenfy — cricn + ¢, + ciacss,
Ky =2B3f4c0c33, Ky = cness(fy — By) — ciien + ¢, + cacis.
For the case where the shear modulus c3; is very small, ¢33 — 0, E tends to zero. For the case where
¢33 — 00, E tends to infinity. An isotropic host medium, which corresponds to ¢33 = (¢1; — ¢12)/2 will result

in E=E/(1 —v*) with E and v being Young’s modulus and the Poisson ratio, respectively.
The compatibility of deformation between the actuator and the host structure indicates that

6,V|a~:tuator = €Y‘host7 |y| < ¢ z= O (10)
Substituting Egs. (4) and (8) into Eq. (10) gives

2 ¢ (& 1 7 ek,

= [ Fhaseg [ @t pi<e (1)

Eq. (11) can be used to determine interfacial shear stress 7. It is interesting to note that, based on the current
actuator model, the elastic property of the orthotropic host structure is governed by only one parameter E.
The suitability of using E to represent the behavior of general orthotropic host media will be discussed in
detail in Section 5.

The singular integral equation (11) and Eq. (2) can be normalized to give

1 = n
/T“)dﬁqo«/ﬂ@dgz% <1,

arme (12)
[1 7({)dl =0,
where
T(n) = t(cn)/oz, n=y/c,
nE (13)

qu—Ea17 o = e,E., o=c/h.

Since Eq. (12) is a singular integral equation of the first kind, the solution of it involves a square-root
singularity (Muskhelishvili, 1953) at |#| = 1. Accordingly, the solution of Eq. (12) can be generally ex-
pressed in terms of the first kind of Chebyshev polynomials, 7}, as

1 o0
T(n d;T; 14

By truncating the Chebyshev polynomial expansion to the Nth term and satisfying the integral equation in
expression (12) at the following collocation points along the actuator,

No1"

N, = cos k=1,2,...,N, (15)

and the unknown coefficients d; can be determined by solving the following algebraic equations
sin ( Lind n)
N I 1
- . k=1
Zd,-N—l[l—i—i—a_mn( n)] — —g/n, k=1,2,...,N. (16)
-

) k—1 N -1
=l ¢in T
N -1
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The interfacial shear stress can then be determined using Eq. (16). The singular behavior of the interfacial
shear stress at the right tip of the actuator is characterized by the following shear stress singularity factor
(SSSF) S:

S = lim [ (e _y)f(y)} = op/en Y d,. (17)

y—c

3. Load transfer and stress distribution

The most important issue in actuator design is the load transfer from the actuator to the host structure.
Using the current actuator model, the electrically induced stress field in the host medium can be obtained
analytically. According to the general solution given by Egs. (5) and (6), the stress distribution in the host
medium can be obtained in terms of interfacial shear stress 7.

For the case where ¢33 < (\/¢11¢22 — ¢12)/2, the induced stress field is

e
:E/ / [Kye " + Kye 77 sin[s(u — y)]7(0, u) dsdu, (18)
—cJ0
e
:E/ / [Ksefﬁlxz_i_](éefﬁzA'Z] sin[s(u — »)]7(0, u) dsdu, (19)
—cJ0
Lopepe .
= / / [Kre "% 4 Kye ] cosls(u — y)]2(0, 1) dsdu, 20)
—cJ0

where K3, Ky, Ks, Kg, K7 and Ky are defined in Appendix C. Using the solution of 7 given by Eq. (14), the
integration in Eqgs. (18)—(20) can be completed, and these stress components can be expressed in explicit
forms as

KSFU(¢ 791)+K4Fl,(d) ,92) j=2n+1,

K5F1/(¢1701) +K6Flj(¢2702) ]:21’l+ 1,
Zd { {KSFZ/(@’ 01) + KeFo;( ¢y, 02)} j=2n, (22)
N —1)"[K:F(¢y,01) + KsFij($,02)], = 2n,
jz;dl{ ] n+1 [K7F2/(¢17 ) + KSsz((f)z, 92)]7 j= 2n+ 1, (23)

where F;, F5; are known functions and ¢,, ¢,, 0,, 0, are functions of y and z, as given in Appendix C.

For ¢33 = (\/0116‘22 - Clz)/Z,

[ (D) [KsFy(do, 00) — 2Ka £ Fij(¢o, 00)], j=2n+1,
Z dj{ _1)71 WSFZJ’(Q’)O’ 90 ZK4 aZFZ.I(d)()’ 00)] j=2n, (24)

= N (_I)HI[ZE% Fii(¢o,00)], Jj=2n+1,
o ;4{(—1) K6 2 Fy (o, 00)],  j = 2n, (25)
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Zd —1)"[K7F(¢g, 00) — ZES_%FU(%,BO)]’ Jj=2n, (26)
(= 1) [K1Fy (o, 00) — zKs ZFoi( o, 00)], j=2n+ 1,

where K3, K4, K¢, K7 and Ky depended only on material constants and ¢,, 0, are functions of y and z, as
given in Appendix C.

For ¢33 > (\/erien — ¢12)/2,

id (_l)n ?3F3j(¢3’937¢4’04) +1:<4E‘j(¢3703a¢4704) , J= 2n + 17 (27)
g, = . E _ 1
’ Jj=1 ’ (_1)’1 K3F§_/(¢37037¢4704> +K4F}’_i(¢37037¢4704) , = 27’1,

g, = idj (_1): KSFéj(d):h 937 ¢4a 94) +K6Hj(¢37 93, (1)47 94) ] =2n+ 1’ (28)
Jj=1 (_1) K5F‘5}(¢37037¢4704) +K6F6](¢3703a¢4704) ) ]: 2”7

Zd —1) ntl |:K7F3j(d)3) 03, ¢4, 04) +K8th(¢3, 03, ¢y, 04)} j=2n+1,
1) |:K7F'5](¢33 037 ¢4a 04) + K8F'61(¢37 03; ¢47 04):| j = 2]’!,

where K3, K4, Ks, K¢, K7, Kg are material constants, F ; and Fy; are known functions and ¢s, 03, ¢y, 0, are
functions of y and z, as given in Appendix C.

(29)

4. Interfacial debonding

Local stress concentration and/or weak interfacial bonding may result in partial debonding between the
actuator and the host material. The debonding will result in further stress concentration and change the
load transfer. To simulate this situation, the actuator considered is assumed symmetrically debonded in
ly| < d, as shown in Fig. 2.

By making use of the equilibrium equation (1) and the traction-free condition at the two ends of the
actuator, the resulting axial strain can be expressed in terms of 7 as

oF

%, 0<y<d,

€Y(y)|actuator = 1 ! Y e. (30)
B [adh —/d r(f)df} —I—E—aEz, d<y<ec,

where
‘1
o= [ %ac (31)
d

EEzd;J
«—— 2C —>

Fig. 2. A debonded actuator.
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is the axial stress in the debonded part of the actuator.
Similar to the case where the actuator is perfectly bonded, the strain along z = 0 in the host material can
be expressed in terms of 1:

0o = | [0 (- )] 32)

The continuity between the actuator and the host structure indicates that

6y|acluator = 6y|hosU d < y < < z= 0 (33)
and
uy(d)‘actuator - uy(0)|actuator = MJ’(da 0)|host - u)’(ov 0)|host' (34)
Substituting Egs. (30) and (32) into Egs. (33) and (34), the following normalized equations can be obtained
as
)dg {)d{ / "
o 7({)d{ =g, <1, 35
I e e L ST (35)
—1 _
ocI/ (0 —2ay) (0" + 1), (36)
n* —
with
1 o
[ ou=2. (37)
1 o
The normalized stresses are given by
7(0) = (el + y") /o3, " =a4/08 (38)
with
n=_y-y)/ea, a=c/h, a = ci/h,
1 1 o (39)
— — — * = — * - - 2* .
C1 Z(C d)7 y 2(C+d), n 3 o

The general solutions of 7 can then be expressed in terms of the following Chebyshev polynomials,

;T;(n), (40)

where dy = o*/(nqa;) to satisfy Eq. (37).
If the Chebyshev polynomial expansion is truncated to the Nth term, and Eq. (35) is satisfied at the
following collocation points along the bonded segment of the actuator given by

k-1
N—1"

N, = cos k=1,2,...,N, (41)

Eq. (35) reduces to
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o~ sin (G m) [ g (k-1 o~ T o2V

J=1

= —g/n, k=1,2,...,N. (42)

* 1 k—1
+— +

Tt{g(l,/n%_l qN—l}
In addition, Eq. (36) becomes

o { =i [l =0+ V=11 /lr" + VT =] = 200 = 221)q | +2
X XN:dj{ - Ttocl/ 1 {(172 - Jrldj/\/nz——ldn} = 2(o0 — 204). (43)

n*

From these equations, the unknown coefficient d; can be determined. The resulting SSSF at the right end of
the debonding part can be obtained as

S = ag\/erm i(—l)jd,. (44)

5. Analysis and discussion
5.1. Effective modulus E

One of the most important parameters governing the load transfer between the actuator and the host
material is the effective modulus of the host medium E given by Eq. (9). Fig. 3 shows the effect of material
anisotropy of the host medium upon the normalized effective modulus E* = E/cy; for ciy/cy; = 0.15. Tt is
observed that the effective modulus E is very sensitive to the shear modulus c33. For cases where ¢, /¢ is
small (<0.3 for example), ¢y, shows a significant effect upon E, which corresponds to the case where
¢ > (1/2) (\/m — 012). In comparison, Fig. 4 shows the effect of the Poisson ratio v,. = ¢12/ci; upon E
for ¢33/c1; = 0.1. Tt is interesting to note that the effective modulus is relatively insensitive to the change of
the Poisson ratio for ¢ /¢y > 0.5.

5.2. Singular stress field around the actuator
The singular stress field near the tip of the actuator can be obtained by using the substitution that
y=c+rcosl, z=rsin0 (45)

and considering the asymptotic property of Egs. (21)-(29) when » — 0.
For ¢33 < (y/e11¢22 — ¢12) /2, the singular stress field is given by

o — S[K3fl(ﬁ1a91) + Kafi1 (B, 02)]

y \/I"_TC ) (46)
.= S [Ks/1(B1, 01) + Kefi (B, 02)] (47)

Vrm ’
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Fig. 3. Effects of material anisotropy on the effective modulus.
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Fig. 4. Effects of the Poisson ratio on the effective modulus.
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[K1£2(By, 01) 4+ Ksfa (s, 0)]
\/;:ﬁ b

where f1(f;,0;) and f>(f;,0:), i =0, 1, 2 are known functions, and 0;, f;, i = 0, 1, 2 are known parameters
given in Appendix D.
For C33 = (./6116‘22 — 612)/2, the singular field is

0, =—S (48)

— [K3/1(Bo: 0o) — Kaarfi(Bo, 0o) — Kaaz 35/ (Bo: 00)]

NG : (49)

6. =S [ - Fsalfl (.307 Goi/ﬁzéaz %fl (ﬁOa 90)} 7 (50)

o — S [K7/2(By, 00) — Fsalfz(\ﬁ/(;;:o) — Ksa> 5 f>(By, 0o)] 7 (51)

where a; = sin’ 0, a, = sin 0 cos 0.
For ¢33 > (\/cricn — ¢12)/2, the singular field is

{1?3?1 (03, 04) + ?4?2(937 94)}

g, =S N ) (52)
[1?5?1(93; 0s) +?6?2(93’ 94)}

g, =S NG , (53)

{?77”4(937 04) + Ksf (05, 94)}
Oy = =S \/ﬁ ) (54)

where f, (0, 04), 15 (05, 0,) are known functions, and 0, 0, are known parameters defined in Appendix D.

Fig. 5 shows the angular distribution of the normalized singular stress field /' = (\/rnop/S)o with dif-
ferent angle 0 around the tip of the actuator, where o represents o,, gy and a,4, respectively. In this figure,
cxn/en = 11.53 and cpp /ey = 0.46. & = (\/ciicn — ¢12)/2c33 is assumed to be 0.25, 1, 4, respectively, rep-
resenting the three phases discussed before. As expected, the maximum shear stress always occurs at
0 = 180°, i.e. along the interface, the maximum oy occurs around 6 = 40°-60° ahead of the actuator, while
for o,,, the maximum is at about 0 = 130°-150°. The actuator material is PZT-4, which has the following
properties:

A =139 % 10" (Pa), % =678 x 10" (Pa),  ¢\¥ =7.43x 10" (Pa),
A =115% 10" (Pa), ¢\ =2.56 x 10'° (Pa),

W =—-52(C/m?), ¥ =151 (C/m%), €Y =127 (C/m’),

d =6.45x107° (C/Vm), &2 =5.62x10"° (C/Vm).

Fig. 6 shows the normalized SSSF S* =S/apv2nh for cp/cy = 0.040 and c33/cy = 0.044 corre-
spondingly, ¢ = 3.019. It shows a significant effect of the material anisotropy c¢;/cs upon the singular
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stress field around the tip of the actuator. With the increase of the length of the actuator (¢/h), the singular
field will approach a steady state, as evidenced by the fact that S* tends to a constant for large c¢/h.

5.3. Stress distribution along the interface

To validate the actuator model in determining the load transfer, interfacial stress predicted from the
current model was compared with that from finite element analysis (ANSYS) using a PZT-4 actuator with
finite thickness. Two different host media were considered:

Orthotropic medium:

AV =13.92x 10" (Pa), ) =160.7 x 10" (Pa),

) =7.07%x 10" (Pa), ) =6.44 x 10" (Pa).
Isotropic medium:

E® =54x10" (Pa), ¥ =03.

The orthotropic and isotropic media have the same effective modulus E, which results in ¢ = 3.019, as
defined in Eq. (13). Our analytical model predicts that interfacial stress uniquely depends on ¢ in consid-
ering the effect of the material properties. The comparison of T = /g5 resulting from different models in
Fig. 7 for the case where o = 10 confirmed this result. It is very interesting to mention that FEM results
from orthotropic and isotropic media give very close interfacial stress distributions. The discrepancy

0.30
020 + \@ —— Current model 1
O FEM Anisotropic
A FEM Isotropic
0.10 - .
* 000+ .
-0.10 | .
-020 | .
- 030 L 1 L 1 L 1 L
1 0.5 0.5 1

0
y/c

Fig. 7. Distribution of the interfacial shear stress.
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between the analytical prediction and the FEM results may be caused by the one-dimensional assumption
of the actuator.

5.4. Axial stress in debonded actuator

For the general case of central debonding, the debonded part will not experience interfacial shear stress.
However, its effect on the load transfer will not disappear. In this case, the debonded region will affect the
structure by applying a compressive (tensile) stress to the remaining parts of the actuator. Fig. 8 shows the
normalized compressive axial stress ¢* = |o,4|/0p, in the debonded part of the actuator for the case con-
sidered in Fig. 2. A significant effect of the anisotropic property of the host medium is observed.

5.5. Stress distribution in host medium

Fig. 9 shows the normalized stress distribution o) =¢,/0p in the host medium for o= 10,
exnfen = 11.53, ¢ia/cin = 0.46 and c33/c; = 0.51. 0, was found highly localized in an area near the tip of
the actuator. Fig. 10 shows the corresponding results for o}, = 0,. /0. For z = 0.5h and 1.0, g,, undergoes
a very sharp reduction around the tip of the actuator before it goes back to its ‘normal’ value. To further
consider this issue, detailed FEM analysis was conducted, which did predict the same phenomenon. The
numerical results for z = 0.5k is compared with the corresponding analytical solution in Fig. 11. A good
agreement can be observed. This phenomenon had also been observed in other material combinations.
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oe7s |- B
----------------------------------------- -~ ~ ~
0.95 |
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—-— ¢,,/c,,=10.0
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d/c

Fig. 8. The axial stress in a debonded actuator.
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Fig. 9. Normal stress distribution in the host medium.
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Fig. 10. Shear stress distribution in the host medium.
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Fig. 11. Comparison of the analytical shear stress distribution with FEM results.

6. Concluding remarks

A general analytical solution is provided to the coupled electromechanical behavior of a piezoelectric
actuator bonded to an orthotropic elastic medium under plane electric loading. The analysis is based on the
use of a piezoelectric line model of the actuator and the solution of the resulting singular integral equations.
The results show that the load transfer between the actuator and the host medium is governed by the ef-
fective moduli of the actuator and the host material.

The validity of the present model has been demonstrated by application to specific examples and
comparison with the corresponding results obtained from finite element analyses. Furthermore, the effect of
interfacial debonding on the load transfer are examined and discussed.
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Appendix A. Effective material constants

The mechanical and electrical properties of piezoceramic materials can be described by

{o} = [cl{e} — [e{E},  {D} = [e[{e} + [e{E},

where
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ey = 3y + 1), Ei=-V,.

In these equations, {¢} and {e} are the stress and the strain fields, {D}, {E} and V represent the electric
displacement, the electric field intensity and the potential, respectively. [c] is a matrix containing the elastic
stiffness parameters for a constant electric potential, [e¢] represents a tensor containing the piezoelectric
constants, and [¢] represents the dielectric constants for zero strains.

According to the electroelastic line actuator model, o, = 0 and ¢, = 0. The effective material constants of
the actuator can then be determined as

2
1

c .
E,=c;; ——2  plane strain,
€33
13 .
e, = e;3 —e33—  plane strain,
€33
&2
& = €33 + 0—33 plane strain,
33

where the direction of polarization is designated as being the z axis.

Appendix B. Basic solution for an orthotropic medium

If the halfspace shown in Fig. 1 is an orthotropic medium whose principal elastic axes (in the two-di-
mensional case) are parallel to the y and z axes, respectively, the constitutive equation is as follows:

Oy Cl1 C12 0 &y
[ = Cla C» 0 &,
g 0 0 C33 Eyz

yz

Using the strain—displacement relation and substituting the constitutive relation into the equilibrium
equations give
% N % (et x) o*w 0
Cll 5 C) C C — Q=
11 G 2%, 12+ €33 ayoz )
*w N o*w (et x) %
C33 —— C) C C — =
33 azy 22 622 12 33 6y62
where w and v represent the displacement components along the z and y directions. Applying Fourier
transform with respect to y defined by

w2 = [ Cutmaeran  wo) = [ wnzeray
the equilibrium equations in the Fourier transform domain can be expressed as
% . ow
35— — s v —1is(cpp +¢33) — =0,
B T Cn (c1a +c33) o
o*w . ov
C»——— — C33S2W — IS(Clz + C33) —=0.

0%z Oz



4738 X.D. Wang, G.L. Huang | International Journal of Solids and Structures 38 (2001) 4721-4740

From these equations, the two unknown functions %(s, z) and w(s,z) can be obtained, which are given in
Egs. (5) and (6).

Appendix C. General solution and stress field

The coefficients used in Eqgs. (18)—(29) and (46)—(54) are given by

_ cuki + cnKof cuks + cioKioBy 2Ky + cnKop

’ Ky ’ ! Ky ’ > Ky
K K — KK
jo C2iy + e 10[32’ K, = By K= B, K= B KK, 7
K By — B, Bi — B ex3(en + e33)

K = —BKiK K — (By — Br)KiK> T. — essl(cinfy + 1)Ky — 2e0Ko i)

on=—"—-, =, 3=— — )

ex3(cn +e33) (c12 +¢33) ﬁon
2
_ _ _ 1 _ _
go=slechite) g gl om o g-_1,
BoK> Bo

Ks = exfen(fs — ﬁi)?l - 2[{3[34012?2 + 6‘11?1]
1?9(012 +¢33)

T, - cxlen(Bs — B3)Ka + 2B3BscinKy + ek C Ke=0 K- 1

?9(012 +c33)
= =
_ BE +K)
ci2 ¢33

The functions of Fi;(¢;, 0:), Fo;(y, 0:), F3j( 3, 03, by 04), Faj(ds, O, by, 0a), F5;(hs, 03, ¢y, 04) and Fy; (s,
03, ¢4, 04) in the local stress expressions (21)—(29) are

sl

gl cos(¢,j — 0:/2)

Fij(¢;,0) =c 4 i=0,1,2,
5/(¢i70i) :c/JrlSln((bi]A—_Hi/Z)Sgn(y)a i:0a1525
1y cos(¢3j — 03/2)  cos(¢yj— 04/2)
Fy=3¢ [ As + Ay ’
1 .. [sin —03/2 sin — 04/2
iy = = 5o [P0 gy 4 ST O )|
3 4
g g [cos(dai = 03/2) _ cos(ehs— 04/2)
5j 2 A3 A4 )
1 . [sin(¢pyj— 03/2 sin(¢,j — 04/2
Py = = 3o [0 gy - ST O )|

where
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—arctg

2|/302||)’\ < Rysin(6y/2) + |y| >
) = —arct - ,
b -plee) ™ E\ Rosin(0/2) + [hy7]

2 2
0, arctg( Bl ) 92:—arctg<—2|ﬁzz||)2}| 2>v
Bizl” = yl* + ¢ 1Bozl” = V" + ¢

—arctg

) 3
Byl = Bz + 3" + € 1Bozl” = 1Bz —y|" + ¢

Ry sin(0,/2) + |y| > b, = —arctg < R,sin(0,/2) + |y )
2=

ct -
—arcts Ry sin(0;/2) + |B2] Rysin(0,/2) + |B,z]

21uz + lIBs ) 94mg< 21B:z — lIBs )

_ Rysin(63/2) + B4z + | _ Rysin(04/2) + B4z — y|
3= ar"tg( Rysin(0s2) + [4z] )7 P+~ T4 TR Gn(0./2) + 5]

2 2
Ry = </(ﬁ§zz -2+ c2) + 4[35}/222, R = C/(ﬁfzz -2+ cz) + 4ﬁfy222,

2
=B re) vapiz, R (B - e+ @) + 48+,

Re— {/(ﬁ%ZZ (B + c2)2 +AB3(Byz — )2,

Ao = Ro[ (Rycos (60/2) + Bi2)” + (Rosin (6/2) +y2)2}j/2,
A= R\[(Ricos(0,/2) + £2) + (R sin(0,/2) + )],
Ay = Rz[(chos(Qg/Z + B22)" + (Rysin(62/2) + 1) }”27

2 .//2
Ay = Ry (R3 cos(0/2) + p222)’ + (R; sin(03/2) + 4z+y)2> } ,

il?

Ay =Ry (R4 cos(0y/2) + faz gt (R4 sin(04/2) + (Byz — y)z)z}

Appendix D. Singular stress field

4739

The functions of f;(B;, 0:), F1(05,04), F>(03, 04), F3(05, 04), F.(05,04) in the angular distribution field ex-

pressions (46)—(54) are

fi(B0) = O
{‘/cos(@)2 + B2 sin(0)’
f2(Bi 0:) = cos((0:/2) . i=0,1,2,
{‘/cos(@)2 + BZsin(0)’
71(05,04) = 1 £(05) + £3(02)], 7205, 04) = 4/a(04) — £a(03)],
7305, 00) = Y £3(05) + £a(02)],74(05, 04) = Y/3(05) — £3(04)],

where



4740 X.D. Wang, G.L. Huang | International Journal of Solids and Structures 38 (2001) 4721-4740

B B sin(6) B S, sin(6) B f, sin(6)
0y = —arctg{ — 2087(9)] , 0= —arctg{ — W] , 0= —arctg[ — W} ,
B f5 sin(0) B B4 sin(0)
= marcte { " Basin(0) + cos<0>}7 o= marcte { " Basin(0) — cos(0) }
_ sin(]0:]/2)
<//3§ sin(0)” + (B, cos(0) + sin(6))?
— COS(|01"/2) , 12374
V/Bsin(0)” + (B cos(0) +sin(0))’
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